Communications to the editor

STRUCTURE OF EVERNINOMICIN B

Sir:

In a previous communication the structure of everheptose B^{1} , a hydrolysis product of everninomicin B^{2} , has been disclosed. We report here the structure of everninomicin B.

Everninomicin B (1) is a colourless crystaline solid, $C_{00}H_{00}NO_{00}Cl_2$,* m.p. 184~185°C, $[\alpha]_D$ -33.1°, ν max 1732 (ester), 1540 (nitro) cm⁻¹. On treatment with diazomethane everninomicin B formed a monomethyl ether (2), $C_{67}H_{101}NO_{36}Cl_2$, m.p. $187 \sim 190^{\circ}C$, $[\alpha]_D - 34.5^{\circ}$. The molecular weight of **2** was found to be 1587 (calc. for $C_{67}H_{101}O_{36}NCl_2$ 1567) by the application of radioactive method³⁾.

Everninomicin B (1) on mild hydrolysis yielded everninomicin B₁ (3), $C_{66}H_{101}NO_{37}Cl_2$, $[\alpha]_D$ —49.1°, ν max 1730 (ester), 1540 (nitro) cm⁻¹; the nitro absorption is stronger than the carbonyl absorption. As in everheptose⁴⁾ and everninomicin⁵⁾ D₁, everninomicin B₁ on treatment with diazomethane underwent cleavage to 4⁴⁾ and olgose B (5).

* Satisfactory elemental analyses were obtained for all new compounds.

Olgose B (5) is an amorphous solid, $C_{37}H_{62}$ O_{23} , $[\alpha]_D - 23.3^\circ$, no carbonyl absorption in the ir. Solvolysis* of 5 with methanolic ptoluene sulphonic acid at room temperature yielded evertetrose¹⁾ B (6) and an ester⁵⁾ (7). The linkage of 6 and 7 in the structure of olgose B (5) was shown in the following way. Permethylated olgose B (8) is a crystalline solid $C_{43}H_{74}O_{23}$, m.p. 182~183°C, $[\alpha]_D$ -26.1°. Solvolysis of 8 yielded 95). On prolonged aqueous acid hydrolysis permethylated olgose B (8) yielded 10, 11, 12 and 13. It is evident from the above observations that the two free hydroxyl groups of 2-O-methyl lyxose moiety must be linked with the primary hydroxyl group and the ester function of 9 in the structure of permethylated olgose B (8). The formation of the hydrolysis products of 5 and 8 is then explained by the acid catalyzed opening of the ortho ester function.

Monomethyl ether of everninomicin B (2) on solvolysis at 10°C yielded evertetrose B (6) and two ortho esters 14 and 15. Nmr and ms of compound 14, $C_{32}H_{47}O_{15}NCl_2$, $[\alpha]_D$ -39.5°, were consistent with the assigned structure. Although compound 15 was rather unstable, its nmr spectrum (in benzene) besides showing the expected features of the molecule showed a pair of mutually coupled doublets (J 10 Hz) at δ 3.98 and 4.15 indicating axial relationship of H₂ and H₃ proton in 15 and therefore in olgose B (5) and its derivatives.

Permethylated everninomicin B (16) is an amorphous solid, $C_{72}H_{111}NO_{36}Cl_2$, $[\alpha]_{D}-29.5^{\circ}$. On mild hydrolysis compound 16 yielded compound 17, $C_{72}H_{113}NO_{36}Cl_2$, $[\alpha]_D - 56.4^\circ$. Treatment of 17 with diazomethane yielded 185) and partially methylated olgose B (19), a crystalline solid, C₄₁H₇₀O₂₃, m.p. 167~170°C, $[\alpha]_{\rm D}$ -35.1°. Compound 19 formed a mono O-acetyl derivative (20), $C_{43}H_{72}O_{24}$, ν , max 3510, 1740 cm⁻¹. In the nmr spectrum besides other expected features of the molecules compound 20 showed a signal at δ 4.86 (d, J 10 Hz) for $H_4^{\prime\prime\prime\prime\prime\prime}$ proton. The position of the free hydroxyl groups in 19 was also confirmed by measuring CD of the cuprammonium complex of 19, $[\theta]_{288}$ +132 (suggesting k¹ chelate). It follows therefore that the two free hydroxyl groups in 19 must be involved in the linkage with the lactone function of 18 in the structure of permethylated everninomicin B (16). The conversion of 16 to 17 then involves the opening of one of the ortho ester linkages.

Based on the aforementioned observations, we propose structure 1 for everninomicin B and structure 3 for everninomicin B_1 . On

^{*} Solvolysis in this Communication refers to treatment of the compound with methanolic *p*-toluene sulphonic acid.

VOL. XXVIII NO. 9

further hydrolysis everninomicin B_1 (3) is converted to everheptose B (21). The conversion of 1 to 3 involves opening of one of the ortho ester linkages and opening of both the ortho ester linkages in 1 leads to the formation of 21.

Ashit K. Ganguly Anil K. Saksena

Chemical Research Department Schering Corporation, Bloomfield, New Jersey 07003 U.S.A.

(Received April 22, 1975)

References

1) GANGULY, A.K. & A.K. SAKSENA: Hydrolysis

products of everninomicin B. Chem. Comm. 1973: 531~532, 1973

- WAGMAN, G. H.; G. M. LUEDEMANN & M. J. WEINSTEIN: Fermentation and isolation of everninomicin. Antimicr. Agents & Chemoth. 1964: 33~37, 1965
- FARO, H. P.; A. K. GANGULY & D. H. R. BARTON: Method for the determination of molecular weights. Chem. Comm. 1971: 823~824, 1971
- GANGULY, A. K.; O. Z. SARRE, D. GREEVES & J. MORTON: Structure and absolute stereochemistry of everheptose. J. Amer. Chem. Soc. 95: 942~945, 1973
- GANGULY, A. K.; O. Z. SARRE, D. GREEVES & J. MORTON: Structure of everninomicin D. J. Amer. Chem. Soc. 97: 1982~1985, 1975